
Ontology Evolution

Motivation
Approach

Authors: Raul Palma, Peter Haase

O t l i d i titi th t l ti F
We propose an ontology-driven approach for the
management of ontology changes in distributed and

What is Ontology Evolution?

Ontologies are dynamic entities that evolve over time. For
instance, domains are not static or fixed, and the
conceptualization or the formal specification of an ontology may
change. The management of ontology dynamics has several
challenges associated, ranging from the adequate control of
ontology changes to the administration of ontology versions.

management of ontology changes in distributed and
collaborative environments [1,2,3]. At a higher-level, an
ontology metadata model allows determining whether an
ontology has changed and provides a general overview
of how it has changed. At a lower level, a change
ontology captures the specific changes that were applied
to an ontology. Moreover, a workflow ontology allows
representing how changes were applied during the
collaborative process, e.g., the policy used for proposals
and approvals.

O t l E l ti

What is the process?

Ontology Evolution

Ontologies evolution refers to the activity of facilitating the
modification of an ontology by preserving its consistency; it can be
seen as a consequence of different activities during the
development of the ontology.

The goal of ontology evolution is to provide a defined process
(t ti ll ith t l t) t f d t d h t

Definition

Goal Task 1. Requesting a change

T k 2 Pl i th h

An ontology in a
consistent state

(potentially with tool support) to perform updates and changes to
one or multiple ontologies.

All ontology engineers that have to perform changes/updates to a
deployed ontology.

An ontology in a consistent state. An ontology in a consistent
state with the proposed
changes implemented.

Input Output

Who

Task 2. Planning the change

Task 3. Implementing the change

Task 4. Verification and Validation

Ontology Development Team

Ontology Development Team

A l i

Ontology Evolution or Ontology Versioning?

Both ontology evolution and ontology versioning deal with the management

Normally it occurs after the ontology has been deployed and needs
to be updated/changed. Changes during the initial creation would be
part of the ontology engineering process.

When
An ontology in a
consistent state

Networked Ontologies

of ontology changes. However, they differ in their focus: ontology evolution
focus on the modification of an ontology by preserving its consistency,
whereas ontology versioning focus on creating and managing different
versions of the ontology.

It is worth mentioning that the process in the figure can be applied to networked ontologies since such a process takes into
account the existing ontology dependencies with other related artifacts, such as instances, mappings, applications and

IST-2005-027595
NeOn-project.org

metadata. In a nutshell, those dependencies are considered during the analysis of the impact and cost in task 2. Furthermore,
during the propagation of the changes in task 3, all the ontology related artifacts are updated (if necessary), ensuring the
consistency of the networked ontologies. Finally, when assessing the correctness of the evolved ontology in task 4, the
verification also takes into consideration the ontology related artifacts to ensure that the whole network of ontologies is
behaving as expected (i.e., it is consistent). So, any conflict that may arise can be caught at an earlier stage and this can affect,
for instance, the decision of whether a change should be implemented.

Ontology Evolution

Tool support in the NeOn Toolkit

Task 1. Requesting a change. RADON plug-in is an ontology diagnosis and repair tool that can be used before starting the
evolution activity, i.e., before applying changes. The Workflow Feature supports the process that coordinates the proposal of
changes in a collaborative environment. It supports a top-down/explicit discovery method, i.e., when changes are requested by
users/developers. Evolva plug-in supports the discovery of changes from external data sources (e.g. text or folksonomies). It
supports a bottom-up/implicit discovery method, i.e., when changes are discovered using machine learning techniques.
Task 2. Planning the change. The NeOn Toolkit provides simple support when deciding whether to make a change or not. In
particular, when a user wants to delete an ontology element, the list of related axioms (the side effect) is shown to the editor,
which permits him to verify the cost of implementing the change.
Task 3. Implementing the change. NeOn Toolkit Ontology Editor allows the manual application of changes to ontologies.
The Change Capturing plug-in supports the logging of changes automatically from the NeOn Ontology Editor. It also supports
the application of logs generated by other systems. Additionally ,it is also in charge of propagating changes to the distributed
copies of the same ontology RADON plug in can be used for the management of inconsistencies

Example

copies of the same ontology. RADON plug-in can be used for the management of inconsistencies.
Task 4. Verification and validation. The Cicero plug-in supports the justification of changes. The Workflow Feature supports
the refining of activities.

Experiment conducted with a team of FAO ontology editors in charge of the maintenance of ontologies in the fishery domain.
The editors performed collaboratively a set of typical changes and actions to a stable version of a fishery ontology in order to
reach a new stable version. In this scenario a central server kept a shared copy of the ontology and the related changes [3].
Task 1 Requesting a change Initially FAO experts requested a set of changes to be applied to the current version of theTask 1. Requesting a change. Initially, FAO experts requested a set of changes to be applied to the current version of the
species ontology (Available at http://www.fao.org/aims/neon.jsp). That is, changes were discovered through a top-down/explicit
method. Ontology editors were working collaboratively in the implementation of the changes and hence it was not necessary to
prioritize such changes(prioritization of multiple changes). The changes were formally represented as individuals of the
change ontology (representation of changes). Additionally, since ontology editors were following a well defined process (i.e.
workflow) for the coordination of the change proposals, they used the NeOn Toolkit together with the collaborative
infrastructure. Consequently, during this task and for every change proposal, the appropriate workflow action (i.e., insert,
update, delete) was also formally represented as an individual of the workflow ontology.
Task 2. Planning the change. For this experiment, it was necessary to implement the changes requested regardless of the
side effects. Therefore, no analysis of the impact or cost was performed. In fact, the idea of the experiment was to assess the
efficiency of the system to support the development of an ontology in a collaborative scenario and not the time or cost of
implementing a change.
Task 3. Implementing the change. For this task, it was not necessary any restructuring of the change(s) because, on the one
hand ,the changes were not too difficult to implement due to the ontology structure and ,on the other hand, the cost of
implementing was not an issue. Additionally, the system (change capturing plug-in) took care of logging automatically the
changes proposed (change logging), maintaining the chronological history of the events.
In this experiment, the change(s) did not introduce any inconsistencies in the ontology. However, in case it were necessary to
manage inconsistencies, the RADON plug-in, could be used to detect and fix them. As aforementioned, the ontology and
related changes were centralized in a server. Furthermore, the ontology used for the experiment was not related to other
artifacts at that moment Hence it was not necessary any propagation of changesartifacts at that moment. Hence, it was not necessary any propagation of changes.
Task 4. Verification and validation. During this task, the ontology editors analyzed every change to ensure that the resulting
ontology was as expected. To this end, they used the appropriate views of the NeOn Toolkit and the collaborative
infrastructure. Additionally, this task was one of the most important of the experiment as it included all the refining activities
derived from the workflow that coordinates the proposal of changes. Hence, an ontology validator was in charge of accepting
or rejecting changes when necessary by using the appropriate interfaces of the Workflow Feature. Finally, at the moment of
the experiment, no support for the justification of changes was used.

Additional information: Contact person: rpalma@man.poznan.pl

IST-2005-027595
NeOn-project.org

Palma, R.; Haase, P.; Corcho, O.; Gómez-Pérez, A.; Ji, Q. An Editorial Workflow Approach For Collaborative Ontology Development. 3rd

Asian Semantic Web Conference. ASWC 08. Bangkok, Thailand, December 2008. Springer. [1]
Palma, R.; Haase, P.; Corcho, O.;, Gómez-Pérez, A. Change Representation For OWL2 Ontologies. Proceedings of the Sixth OWLED
Workshop, collocated with the ISWC-2009, Washington, USA, October 23-24, 2009. CEUR-WS.org. [2]
“D1.3.2. Change management to support collaborative workflows ”. NeOn Deliverable. December 2008. [3]
“D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks”. NeOn Deliverable.
February, 2009. [4]

